Distribusi Frekuensi

Distribusi Frekuensi

Hasil pengukuran yang kita peroleh disebut dengan data mentah. Besarnya hasil pengukuran yang kita peroleh biasanya bervariasi. Apabila kita perhatikan data mentah tersebut, sangatlah sulit bagi kita untuk menarik kesimpulan yang berarti. Untuk memperoleh gambaran yang baik mengenai data tersebut, data mentah tersebut perlu di olah terlebih dahulu.
Pada saat kita dihadapkan pada sekumpulan data yang banyak, seringkali membantu untuk mengatur dan merangkum data tersebut dengan membuat tabel yang berisi daftar nilai data yang mungkin berbeda (baik secara individu atau berdasarkan pengelompokkan) bersama dengan frekuensi yang sesuai, yang mewakili berapa kali nilai-nilai tersebut terjadi. Daftar sebaran nilai data tersebut dinamakan dengan Daftar Frekuensi atau Sebaran Frekuensi (Distribusi Frekuensi).
Dengan demikian, distribusi frekuensi adalah daftar nilai data (bisa nilai individual atau nilai data yang sudah dikelompokkan ke dalam selang interval tertentu) yang disertai dengan nilai frekuensi yang sesuai.
Pengelompokkan data ke dalam beberapa kelas dimaksudkan agar ciri-ciri penting data tersebut dapat segera terlihat. Daftar frekuensi ini akan memberikan gambaran yang khas tentang bagaimana keragaman data. Sifat keragaman data sangat penting untuk diketahui, karena dalam pengujian-pengujian statistik selanjutnya kita harus selalu memperhatikan sifat dari keragaman data. Tanpa memperhatikan sifat keragaman data, penarikan suatu kesimpulan pada umumnya tidaklah sah.
Sebagai contoh, perhatikan contoh data pada Tabel 1. Tabel tersebut adalah daftar nilai ujian Matakuliah Statistik dari 80 Mahasiswa (Sudjana, 19xx).
Tabel 1. Daftar Nilai Ujian Matakuliah Statistik
7949487481988780
8084907091938278
7071923856817473
6872855165938386
9035837374438688
9293767190726775
8091617297918881
7074999580597177
6360838260678963
7663887066887975
Sangatlah sulit untuk menarik suatu kesimpulan dari daftar data tersebut. Secara sepintas, kita belum bisa menentukan berapa nilai ujian terkecil atau terbesar. Demikian pula, kita belum bisa mengetahui dengan tepat, berapa nilai ujian yang paling banyak atau berapa banyak mahasiswa yang mendapatkan nilai tertentu. Dengan demikian, kita harus mengolah data tersebut terlebih dulu agar dapat memberikan gambaran atau keterangan yang lebih baik.
Bandingkan dengan tabel yang sudah disusun dalam bentuk daftar frekuensi (Tabel 2a dan Tabel 2b). Tabel 2amerupakan daftar frekuensi dari data tunggal dan Tabel 2b merupakan daftar frekuensi yang disusun dari data yang sudah di kelompokkan pada kelas yang sesuai dengan selangnya. Kita bisa memperoleh beberapa informasi atau karakteristik dari data nilai ujian mahasiswa.
Tabel 2a.
NoNilai UjianFrekuensi
xifi
1351
2360
3370
4381
:::
16704
17713
::1
42981
43991
Total80
Pada Tabel 2a, kita bisa mengetahui bahwa ada 80 mahasiswa yang mengikuti ujian, nilai ujian terkecil adalah 35 dan tertinggi adalah 99. Nilai 70 merupakan nilai yang paling banyak diperoleh oleh mahasiswa, yaitu ada 4 orang, atau kita juga bisa mengatakan ada 4 mahasiswa yang memperoleh nilai 70, tidak ada satu pun mahasiswa yang mendapatkan nilai 36, atau hanya satu orang mahasiswa yang mendapatkan nilai 35.
Tabel 2b.
Kelas ke-Nilai UjianFrekuensi fi
131 – 402
241 – 503
351 – 605
461 – 7013
571 – 8024
681 – 9021
791 – 10012
Jumlah80
Tabel 2b merupakan daftar frekuensi dari data yang sudah dikelompokkan. Daftar ini merupakan daftar frekuensi yang sering digunakan. Kita sering kali mengelompokkan data contoh ke dalam selang-selang tertentu agar memperoleh gambaran yang lebih baik mengenai karakteristik dari data. Dari daftar tersebut, kita bisa mengetahui bahwa mahasiswa yang mengikuti ujian ada 80, selang kelas nilai yang paling banyak diperoleh oleh mahasiswa adalah sekitar 71 sampai 80, yaitu ada 24 orang, dan seterusnya. Hanya saja perlu diingat bahwa dengan cara ini kita bisa kehilangan identitas dari data aslinya. Sebagai contoh, kita bisa mengetahui bahwa ada 2 orang yang mendapatkan nilai antara 31 sampai 40. Meskipun demikian, kita tidak akan tahu dengan persis, berapa nilai sebenarnya dari 2 orang mahasiswa tersebut, apakah 31 apakah 32 atau 36 dst.
Ada beberapa istilah yang harus dipahami terlebih dahulu dalam menyusun daftar frekuensi.
Tabel 3.
Kelas ke-Selang
Nilai Ujian
Batas KelasNilai Kelas
(xi)
Frekuensi
(fi)
131 – 4030.5 – 40.535.52
241 – 5040.5 – 50.545.53
351 – 6050.5 – 60.555.55
461 – 7060.5 – 70.565.513
571 – 8070.5 – 80.575.524
681 – 9080.5 – 90.585.521
791 – 10090.5 – 100.595.512
Jumlah80
Range : Selisih antara nilai tertinggi dan terendah. Pada contoh ujian di atas, Range = 99 – 35 = 64
Batas bawah kelas: Nilai terkecil yang berada pada setiap kelas. (Contoh: Pada Tabel 3 di atas, batas bawah kelasnya adalah 31, 41, 51, 61, …, 91)
Batas atas kelas: Nilai terbesar yang berada pada setiap kelas. (Contoh: Pada Tabel 3 di atas, batas bawah kelasnya adalah 40, 50, 60, …, 100)
Batas kelas (Class boundary): Nilai yang digunakan untuk memisahkan antar kelas, tapi tanpa adanya jarak antara batas atas kelas dengan batas bawah kelas berikutnya. Contoh: Pada kelas ke-1, batas kelas terkecilnya yaitu 30.5 dan terbesar 40.5. Pada kelas ke-2, batas kelasnya yaitu 40.5 dan 50.5. Nilai pada batas atas kelas ke-1 (40.5) sama dengan dan merupakan nilai batas bawah bagi kelas ke-2 (40.5). Batas kelas selalu dinyatakan dengan jumlah digit satu desimal lebih banyak daripada data pengamatan asalnya. Hal ini dilakukan untuk menjamin tidak ada nilai pengamatan yang jatuh tepat pada batas kelasnya, sehingga menghindarkan keraguan pada kelas mana data tersebut harus ditempatkan. Contoh: bila batas kelas di buat seperti ini:
Kelas ke-1 : 30 – 40
Kelas ke-2 : 40 – 50
:
dst.
Apabila ada nilai ujian dengan angka 40, apakah harus ditempatkan pada kelas-1 ataukah kelas ke-2?
Panjang/lebar kelas (selang kelas): Selisih antara dua nilai batas bawah kelas yang berurutan atau selisih antara dua nilai batas atas kelas yang berurutan atau selisih antara nilai terbesar dan terkecil batas kelas bagi kelas yang bersangkutan. Biasanya lebar kelas tersebut memiliki lebar yang sama. Contoh:
lebar kelas = 41 – 31 = 10 (selisih antara 2 batas bawah kelas yang berurutan) atau
lebar kelas = 50 – 40 = 10 (selisih antara 2 batas atas kelas yang berurutan) atau
lebar kelas = 40.5 – 30.5 = 10. (selisih antara nilai terbesar dan terkecil batas kelas pada kelas ke-1)
Nilai tengah kelas: Nilai kelas merupakan nilai tengah dari kelas yang bersangkutan yang diperoleh dengan formula berikut: ½ (batas atas kelas+batas bawah kelas). Nilai ini yang dijadikan pewakil dari selang kelas tertentu untuk perhitungan analisis statistik selanjutnya. Contoh: Nilai kelas ke-1 adalah ½(31+40) = 35.5
Banyak kelas: Sudah jelas! Pada tabel ada 7 kelas.
Frekuensi kelas: Banyaknya kejadian (nilai) yang muncul pada selang kelas tertentu. Contoh, pada kelas ke-1, frekuensinya = 2. Nilai frekuensi = 2 karena pada selang antara 30.5 – 40.5, hanya ada 2 angka yang muncul, yaitu nilai ujian 31 dan 38.

Teknik pembuatan Tabel Distribusi Frekuensi (TDF)

Distribusi frekuensi dibuat dengan alasan berikut:
  • kumpulan data yang besar dapat diringkas
  • kita dapat memperoleh beberapa gambaran mengenai karakteristik data, dan
  • merupakan dasar dalam pembuatan grafik penting (seperti histogram).
Banyak software (teknologi komputasi ) yang bisa digunakan untuk membuat tabel distribusi frekuensi secara otomatis. Meskipun demikian, di sini tetap akan diuraikan mengenai prosedur dasar dalam membuat tabel distribusi frekuensi.
Langkah-langkah dalam menyusun tabel distribusi frekuensi:
  • Urutkan data, biasanya diurutkan dari nilai yang paling kecil
    • Tujuannya agar range data diketahui dan mempermudah penghitungan frekuensi tiap kelas!
  • Tentukan range (rentang atau jangkauan)
    • Range = nilai maksimum – nilai minimum
  • Tentukan banyak kelas yang diinginkan. Jangan terlalu banyak/sedikit, berkisar antara 5 dan 20, tergantung dari banyak dan sebaran datanya.
    • Aturan Sturges:
    • Banyak kelas = 1 + 3.3 log n, dimana n = banyaknya data
  • Tentukan panjang/lebar kelas interval (p)
    • Panjang kelas (p) = [rentang]/[banyak kelas]
  • Tentukan nilai ujung bawah kelas interval pertama
Pada saat menyusun TDF, pastikan bahwa kelas tidak tumpang tindih sehingga setiap nilai-nilai pengamatan harus masuk tepat ke dalam satu kelas. Pastikan juga bahwa tidak akan ada data pengamatan yang tertinggal (tidak dapat dimasukkan ke dalam kelas tertentu). Cobalah untuk menggunakan lebar yang sama untuk semua kelas, meskipun kadang-kadang tidak mungkin untuk menghindari interval terbuka, seperti ” ≥ 91 ” (91 atau lebih). Mungkin juga ada kelas tertentu dengan frekuensi nol.
Contoh:
Kita gunakan prosedur di atas untuk menyusun tabel distribusi frekuensi nilai ujian mahasiswa (Tabel 1).
Berikut adalah nilai ujian yang sudah diurutkan:

 35  38  43  48  49  51  56  59  60  60
 61  63  63  63  65  66  67  67  68  70
 70  70  70  71  71  71  72  72  72  73
 73  74  74  74  74  75  75  76  76  77
 78  79  79  80  80  80  80  81  81  81
 82  82  83  83  83  84  85  86  86  87
 88  88  88  88  89  90  90  90  91  91
 91  92  92  93  93  93  95  97  98  99

 2. Range:
    [nilai tertinggi – nilai terendah] = 99 – 35 = 64

 3. Banyak Kelas:
    Tentukan banyak kelas yang diinginkan.
    Apabila kita lihat nilai Range = 64, mungkin banyak kelas
    sekitar 6 atau 7.
    Sebagai latihan, kita gunakan aturan Sturges.
    banyak kelas = 1 + 3.3 x log(n)
                 = 1 + 3.3 x log(80)
                 = 7.28 ≈ 7

 4. Panjang Kelas:
    Panjang Kelas = [range]/[banyak kelas]
                  = 64/7
                  = 9.14 ≈ 10
                    (untuk memudahkan dalam penyusunan TDF)

 5. Tentukan nilai batas bawah kelas pada kelas pertama.
    Nilai ujian terkecil = 35
    Penentuan nilai batas bawah kelas bebas saja,
    asalkan nilai terkecil masih masuk ke dalam kelas tersebut.
    Misalkan: apabila nilai batas bawah yang kita pilih adalah 26,
    maka interval kelas pertama: 26 – 35, nilai 35 tepat jatuh
    di batas atas kelas ke-1. Namun apabila kita pilih
    nilai batas bawah kelas 20 atau 25, jelas nilai terkecil, 35,
    tidak akan masuk ke dalam kelas tersebut.
    Namun untuk kemudahan dalam penyusunan dan pembacaan TDF,
    tentunya juga untuk keindahan, he2.. lebih baik kita memilih
    batas bawah 30 atau 31.  Ok, saya tertarik dengan angka 31,
    sehingga batas bawahnya adalah 31.

 Dari prosedur di atas, kita dapat info sebagai berikut:
 Banyak kelas       : 7
 Panjang kelas      : 10
 Batas bawah kelas  : 31
 Selanjutnya kita susun TDF:
 Form TDF:
 ------------------------------------------------------------
  Kelas ke- | Nilai Ujian | Batas Kelas | Turus | Frekuensi
 ------------------------------------------------------------
      1        31 -
      2        41 -
      3        51 -
      :        :  -
      6        81 -
      7        91 -
 ------------------------------------------------------------
   Jumlah
 ------------------------------------------------------------
 Tabel berikut merupakan tabel yang sudah dilengkapi
Kelas ke-Nilai UjianBatas KelasFrekuensi
(fi)
131 – 4030.5 – 40.52
241 – 5040.5 – 50.53
351 – 6050.5 – 60.55
461 – 7060.5 – 70.513
571 – 8070.5 – 80.524
681 – 9080.5 – 90.521
791 – 10090.5 – 100.512
Jumlah80
atau dalam bentuk yang lebih ringkas:
Kelas ke-Nilai UjianFrekuensi
(fi)
131 – 402
241 – 503
351 – 605
461 – 7013
571 – 8024
681 – 9021
791 – 10012
Jumlah80

Distribusi Frekuensi Relatif dan Kumulatif

Variasi penting dari distribusi frekuensi dasar adalah dengan menggunakan nilai frekuensi relatifnya, yang disusun dengan membagi frekuensi setiap kelas dengan total dari semua frekuensi (banyaknya data). Sebuah distribusi frekuensi relatif mencakup batas-batas kelas yang sama seperti TDF, tetapi frekuensi yang digunakan bukan frekuensi aktual melainkan frekuensi relatif. Frekuensi relatif kadang-kadang dinyatakan sebagai persen.
Frekuensi relatif = \dfrac{{{f_i}}}{{\sum {f_i}}} \times 100\% = \dfrac{{{f_i}}}{n} \times 100\%
Contoh: frekuensi relatif kelas ke-1:
fi = 2; n = 80
Frekuensi relatif = 2/80 x 100% = 2.5%
Kelas ke-Nilai UjianFrekuensi relatif (%)
131 – 402.50
241 – 503.75
351 – 606.25
461 – 7016.25
571 – 8030.00
681 – 9026.25
791 – 10015.00
Jumlah100.00

Distribusi Frekuensi kumulatif

Variasi lain dari distribusi frekuensi standar adalah frekuensi kumulatif. Frekuensi kumulatif untuk suatu kelas adalah nilai frekuensi untuk kelas tersebut ditambah dengan jumlah frekuensi semua kelas sebelumnya.
Perhatikan bahwa kolom frekuensi selain label headernya diganti dengan frekuensi kumulatif kurang dari, batas-batas kelas diganti dengan “kurang dari” ekspresi yang menggambarkan kisaran nilai-nilai baru.
Nilai UjianFrekuensi kumulatif kurang dari
kurang dari 30.50
kurang dari 40.52
kurang dari 50.55
kurang dari 60.510
kurang dari 70.523
kurang dari 80.547
kurang dari 90.568
kurang dari 100.580
atau kadang disusun dalam bentuk seperti ini:
Nilai UjianFrekuensi kumulatif kurang dari
kurang dari 412
kurang dari 515
kurang dari 6110
kurang dari 7123
kurang dari 8147
kurang dari 9168
kurang dari 10180
Variasi lain adalah Frekuensi kumulatif lebih dari. Prinsipnya hampir sama dengan prosedur di atas.

Histogram

Histogram adalah merupakan bagian dari grafik batang di mana skala horisontal mewakili nilai-nilai data kelas dan skala vertikal mewakili nilai frekuensinya. Tinggi batang sesuai dengan nilai frekuensinya, dan batang satu dengan lainnya saling berdempetan, tidak ada jarak/ gap diantara batang. Kita dapat membuat histogram setelah tabel distribusi frekuensi data pengamatan dibuat.

Poligon Frekuensi:

Poligon Frekuensi menggunakan segmen garis yang terhubung ke titik yang terletak tepat di atas nilai-nilai titik tengah kelas. Ketinggian dari titik-titik sesuai dengan frekuensi kelas, dan segmen garis diperluas ke kanan dan kiri sehingga grafik dimulai dan berakhir pada sumbu horisontal.

Ogive

Ogive adalah grafik garis yang menggambarkan frekuensi kumulatif, seperti daftar distribusi frekuensi kumulatif. Perhatikan bahwa batas-batas kelas dihubungkan oleh segmen garis yang dimulai dari batas bawah kelas pertama dan berakhir pada batas atas dari kelas terakhir. Ogive berguna untuk menentukan jumlah nilai di bawah nilai tertentu. Sebagai contoh, pada gambar berikut menunjukkan bahwa 68 mahasiswa mendapatkan nilai kurang dari 90.5.

Tidak ada komentar:

Posting Komentar